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Abstract—Specialized ray-tracing acceleration units have be-
come a common feature in GPU hardware, enabling real-time
ray-tracing of complex scenes for the first time. The ray-tracing
unit accelerates the traversal of a hierarchical tree data structure
called a bounding volume hierarchy to determine whether rays
have intersected triangle primitives. Hierarchical search algo-
rithms are a fundamental software pattern common in many
important domains, such as recommendation systems and point
cloud registration, but are difficult for GPUs to accelerate because
they are characterized by extensive branching and recursion.
The ray-tracing unit overcomes these limitations with specialized
hardware to traverse hierarchical data structures efficiently, but
is mired by a highly specialized graphics API, which is not
readily adaptable to general-purpose computation. We present
the Hierarchical Search Unit (HSU), a flexible datapath to
accelerate a more general class of hierarchical search algorithms,
of which ray-tracing is one. We synthesize a baseline ray-
intersection datapath and maximize functional unit reuse while
extending the ray-tracing unit to support additional computations
and a more general set of instructions. We demonstrate that
the unit can improve the performance of three hierarchical
search data structures in approximate nearest neighbors search
algorithms and a B-tree key-value store index. For a minimal
extension to the existing unit, our HSU improves the state-of-
the-art GPU approximate nearest neighbor implementation by an
average of 24.8% using the GPU’s general computing interface.

Index Terms—GPU, Ray-Tracing, BVH, Nearest Neighbors

I. INTRODUCTION

Ray-traced (RT) rendering generates photo-realistic images
by casting millions of rays into a scene and generating
pixel colors based on the objects they intersect with [23],
[64]. While such techniques often generate computer graphics
of a higher quality than traditional rasterization techniques,
the large number of ray-triangle intersection computations
required had prevented their adoption in applications with real-
time rendering requirements until the introduction of dedicated
RT hardware accelerators [44]. To reduce the number of
intersection tests required for a given ray, scene primitives
(commonly triangles) are organized in data structures such as
Bounding Volume Hierarchies (BVH), which allow the search
space to be culled by hierarchically eliminating candidate
primitives. RT units accelerate the traversal of BVH trees, and
the ray-triangle intersection tests computed upon reaching a
leaf node.

There are two primary benefits the RT unit provides over
traditional GPU SIMT hardware: it improves throughput in
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Fig. 1: Hierarchical Navigable Small World (HNSW)
Graphs, Bounding Volume Hierarchy, and K-D tree hier-
archical data structures are commonly used to accelerate
search on GPUs and have similar branching characteristics
which make them difficult to execute on SIMT execution
units. Current GPU ray tracing units only accelerate
BVH traversal, which has limited effectiveness at higher
dimensions and with non ray-tracing workloads.

highly thread-divergent workloads (which is a common char-
acteristic of RT workloads [8], [11]), and it provides fixed
function datapaths to perform complete ray-box and ray-
triangle intersection tests with a single instruction [1]. These
RT accelerators implement CISC instructions that fetch data
from memory and perform several calculations before return-
ing the result. The ray-tracing problem requires searching a
large set of primitives and testing for intersections with a
given ray. In this work, we capitalize upon the observation
that this search-and-compute software pattern is not limited to
ray tracing applications. The dedicated hardware to accelerate
ray tracing can be easily extended to benefit more general
GPU search algorithms that may use different hierarchical data
structures.

Presently RT unit resources on Nvidia and AMD GPUs
are only accessible via graphics library APIs such as Optix,
Vulkan, or DirectX. This reduces RT unit accessibility for
scientific application developers who may be familiar with
CUDA but not graphics pipelines. However, several works
have successfully adapted the use of RT units to acceler-
ate non-graphics workloads [6], [15], [21], [38], [40], [63],
[71], [74]. While this requires significant programming effort,
adapting the problem to execute on the GPU RT unit can
unlock substantial performance gains. For example, Zhu [74]
reformulates the nearest neighbors problem to use RT units



for acceleration and achieves speedups over several GPU
nearest neighbor implementations. However, the design does
not support datasets with more than three dimensions, and non-
ideal reformulations are made, such as representing a point as
a ray with a fixed direction and small extent. Further, the RT
unit graphics APIs provide little visibility and control over
the creation and layout of the bounding volume hierarchy to
the programmer. Optimal partitioning of data while creating
the BVH can vary for different datasets and applications
and significantly impacts performance during traversal. The
opaque hierarchical data structures built by RT library APIs
may be optimal for graphics applications but sub-optimal for
other application domains.

The current state of ray tracing unit programming is similar
to the early stages of general-purpose GPU programming
before the creation of programming models such as CUDA,
ROCm, or OpenCL. In those days, GPU programmers were
forced to reformulate their problems to fit a graphics ren-
dering model which restricted their capability and ease of
use. For example, Larsen and McAllister [31] represented
matrix elements as colors and computed a matrix product by
rendering an image of a cube and reading the results from
screen memory. Thompson, Hahn, and Oskin [58] developed
an early C++ programming framework which made it easier
to accelerate vector computations using graphics hardware.
However, they enumerated several limitations of the hardware,
which was designed without general-purpose computing in
mind, such as a lack of operating system management of GPU
memory and the inability to preserve state across vertex shader
invocations. Similar to early GPU programming, applications
using the ray tracing unit for acceleration must adhere to
a rigid programming structure with a fixed set of graphics
shaders and data structures (see section III-A). Applications
that successfully adapt their algorithm to fit within these
constraints are still limited by restrictive hardware that was
designed only with ray-tracing acceleration in mind. Current
GPU RT Units only support three-dimensional data and the
hierarchical data structure is restricted to an opaque BVH
whose type and format are fixed. Figure 1 shows three com-
mon hierarchical data structures used in GPU nearest neighbor
applications: hierarchical graphs, BVH, and k-d trees [41].
Graph-based hierarchies are currently used by the state-of-the-
art ANN implementations for high-dimension features [18],
[22], [47], [72], but cannot easily be accelerated by existing
GPU ray tracing units.

Given the limitations of existing GPU ray tracing units,
we propose a new Hierarchical Search Unit (HSU) that can
accelerate a broad class of hierarchical search data structures
and is programmable via a small, simple set of GPU instruc-
tions. We examine the functional units required to implement a
baseline RT unit and determine that angular/euclidean distance
calculations and B-tree key comparisons can be performed
in the RT unit with minimal additions to the hardware. We
evaluate the performance of HSU on Approximate Nearest
Neighbor (ANN) search, which is a critical kernel in several
important domains, including recommendation systems, au-

tonomous driving systems, point cloud registration, and motion
estimation. Our unit can accelerate searches in high-dimension
datasets by reducing and aggregating distance results across
multiple HSU instructions. We demonstrate its effectiveness
by accelerating three different GPU ANN algorithms using
distinct hierarchical data structures: a hierarchical navigable
small world graph [18], a k-d tree [41], and a bounding volume
hierarchy [74]. Additionally, we show how the unit can be
applied to a b-tree key-value store for general 1-dimension
search applications [9]. In summary, we make the following
contributions:

• We propose a new programming interface for building
and traversing hierarchical search structures on GPGPUs

• We design HSU, a set of Ray Tracing Unit compute
extensions capable of performing euclidean/angular dis-
tance calculations with arbitrarily high dimensions, and
key comparisons common in 1-dimension search algo-
rithms.

• We simulate the performance benefit of HSU across a
broad range of datasets using four representative hierar-
chical search algorithms.

• We synthesize RTL designs for our baseline ray tracing
datapath and enhanced HSU datapath to estimate their
area and dynamic power cost.

II. BACKGROUND

A. Ray tracing algorithms

The runtime of ray tracing computation is dominated by two
key operations: tree traversal and ray-primitive intersection
tests. To reduce the overhead of ray intersection computations,
scene primitives are typically organized into hierarchical tree
data structures known as Acceleration Structures (AS). These
AS are used to prune the search space while determining
which objects a ray intersects with. Optimal AS creation,
traversal, and scene modification is a rich area of research with
a large body of prior work [10], [17], [32], [50], [62], [65],
[73]. Bounding volume hierarchy (BVH) has become the most
common type of AS used on GPUs. Nvidia and AMD GPUs
use BVH for their acceleration structure [1], [45] because
of its bounded memory footprint and flexibility to adapt to
changing scene geometry [25]. Programmable GPUs have
a large memory bandwidth and massively parallel compute
units, thus they are an obvious choice to target ray tracing
applications. However, ray tracing on GPUs has suffered poor
SIMT efficiency and hardware utilization due to the branching
and recursion inherent to the algorithm [8], [11], [52].

B. Bounding Volume Hierarchies

A graphics scene can be composed of hundreds of millions
of triangle primitives. BVH partitions primitives into subsets
contained in bounding volumes, which are typically axis
aligned and referred to as Axis Aligned Bounding Boxes
(AABBs). Rather than test each primitive individually for ray
intersection, a ray can be tested against the larger bounding
volume. If the ray does not intersect with the AABB, it is
guaranteed not to intersect with any of the smaller AABBs or
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primitives contained within. However if the ray does intersect
with the volume, the search must continue down the tree.

Figure 2 shows an example scene with four primitives
and 3 AABBs. BVH structures can be constructed top-down
or bottom-up using heuristics such as scene surface area to
determine bounding volume divisions [32], [62]. Ray search
begins by testing if the ray intersects AABB A1. After a
hit is confirmed search continues by testing AABB A2. If
the ray does not intersect with A2, search can continue with
A3 without testing intersection for primitives P1 and P2. In
BVH structures volumes may overlap, however each primitive
belongs to exactly one leaf node. For example A2 and A3
overlap in the scene, but P2 exists only in the A2 volume in
the BVH. This fundamentally differs from spatial subdivision
techniques like grids or k-d trees, which partition space into
non-overlapping regions.

III. THE HIERARCHICAL SEARCH UNIT PROGRAMMING
INTERFACE

A. Baseline Ray Tracing Unit Programming Interface

The baseline ray tracing unit is accessible only via graphics
APIs such as DirectX, Vulkan, or Optix [45]. These APIs de-
fine a graphics pipeline that follows the fixed structure shown
in Figure 3 but is adaptable via user defined shaders or Optix
programs. The RT unit follows a single instruction multiple
ray execution model wherein each ray is directly mapped
to a corresponding CUDA thread. The user-defined Optix
programs are shaded in green while operations performed by
the RT unit hardware or graphics driver software are in white.
These programs are essentially CUDA callback functions that
are triggered by the RT unit during various stages of tree
traversal. When a program is triggered, control is transferred

from the RT unit or graphics driver software to a user-defined
shader which executes before returning control back to the
fixed function logic. The ray generation program (RG) serves
as the entry point to the pipeline and typically is used to
define the ray origin and direction. The intersection program
(IS) is called each time a leaf node is encountered while
traversing the AS. The intended purpose of the IS program is to
allow programmers to define custom ray-primitive intersection
tests. The IS program is optional; if triangles are used for
primitives, the RT unit can execute ray-triangle intersection
tests in hardware. The any-hit (AH) program is also optional,
and is triggered any time an intersection is found. AH can
be used to terminate ray traversal or reject intersections based
on customized conditions. After ray traversal completes the
closest-hit (CH) program is invoked if an intersection was
found. If no hit occurred the miss program is called.

B. HSU Programming Interface

The HSU extends the baseline RT Unit ISA, and is therefore
fully compatible with existing graphics ray tracing interfaces.
In contrast to a standard baseline RT Unit, HSU also works in
conjunction with a CUDA library that provides a set of config-
urable hierarchical data structures which are accessible from
within device kernels. HSU natively supports N-dimensional
data points as well as standard ray tracing primitives such as
triangles and AABBs. This allows the HSU library to express
a larger class of data in a more intuitive and memory-efficient
manner than past approaches such as [21], [74] which resorted
representing point data as a ray with a small extent or the
center of a triangle. The library provides a set of optimized
algorithms and data structures that make use of the HSU
hardware, similar to existing GPU search libraries [22], [49].
The library provides support for creating and traversing the
following structures:

• B-Trees for key-value stores [3], [21]
• Bounding Volume Hierarchies for ray tracing and 3-D

applications
• K-D trees for N-Dimension point searches and Approxi-

mate Nearest Neighbors [41]
• Hierarchical Graphs for N-Dimension Approximate Near-

est Neighbors and vector search [18], [47]
Additionally, the HSU’s basic operations, such as ray-box

intersection tests and N-dimension distance operations, are
directly available to CUDA programmers for use in device
code, which allows programmers the flexibility to create
their own application-specific data structures. The function for
performing Euclidean distance calculation, euclid dist(a, b,
N), has three input arguments and returns a single 32 bit float
value. The first two arguments are pointers to an array of floats
which represent two N-dimensional points. The return value
of the function is the squared euclidean distance between the
two points. The angular distance function, angular dist(a,
b, N), behaves in the same manner except the angular distance
between the two points is returned. The compiler inserts
the appropriate number of HSU instructions according to the
dimension of the data points, as described in Section IV-F.



IV. THE HIERARCHICAL SEARCH UNIT HARDWARE
DESIGN

A. Baseline Ray Tracing Unit Hardware

We design our baseline ray tracing unit to closely match
the operation described by the IMAGE INTERSECT RAY in-
structions defined in AMD’s RDNA3 ISA [1]. Ray data and
BVH node data pointers are passed to the RT unit through the
register file. The unit then fetches the requisite node data from
the L1 data cache for each active thread. Each active thread
in the instruction performs either one ray-triangle intersection
test, or up to four ray-box intersection tests depending on the
type of node data retrieved from memory. The results of the
tests are then written to the instruction’s result registers. Our
baseline RT unit builds upon the GPU Ray Tracing model
established in prior work [34], [51]. However rather than
maintain a per-ray traversal stack in hardware, we return the
results of each intersection test through the register file [1] and
allow software to manage the traversal stack. There are several
advantages of this approach. First, it allows for flexibility in
adapting to different traversal algorithms [7], [19] and BVH
widths [14], [33], [60]. Second, it enables software to manage
the traversal stack in low-latency shared memory [70] rather
than each thread’s local memory space or choose to implement
a stackless or short stack traversal algorithm. Lastly, it reduces
the area and power overheads of storing per-thread traversal
stack information within the RT unit. Figure 4 shows how our
ray tracing unit integrates with the rest of the SM.

Each SM includes one RT unit shared across all four
schedulers in a similar manner to the load store unit [5]. A
warp is dispatched to the RT unit during the execution stage of
the SIMT pipeline and a round robin arbiter is used to select
between warps from different sub-cores if there are multiple
RT warp instructions dispatched at the same time. Since each
RT instruction must load its triangle or box node operand data
from memory, the unit buffers multiple warp instructions in
a Warp Buffer to enable memory-level parallelism similar to
[51]. Upon dispatch, the active mask of the warp instruction
is written into an empty warp buffer entry along with each
thread’s ray data and an address pointer to its node data. The
active threads in a warp instruction that enters the warp buffer
push their node data memory requests into the FIFO memory
access queue. The FIFO memory access queue then accesses
the L1 cache once per cycle. Upon a miss the request is
forwarded to the interconnect, and eventually returned via the
response FIFO. The valid mask bits are used to track which
threads have gathered their node data or are still waiting to
submit a memory access request to the memory access FIFO.
When the active mask is equal to the valid mask, all of the
warp instruction’s data has been gathered and it is ready to be
scheduled to the datapath.

B. Baseline Unified Single-Lane Datapath Pipeline

Our baseline design includes a pipelined unified ray-box
and ray-triangle intersection test datapath similar to RayCore
[42] to take advantage of the overlap in functional units

necessary for the two computations. Ray tracing workloads
tend to exhibit large amounts of thread-divergence leading
to poor SIMT efficiency while performing ray-box and ray-
triangle tests [11], [29], [51], [52], [70] and GPU hierarchical
search applications often suffer from the same divergence
performance issues. In fact, the RTNN algorithm [74] performs
a pre-processing step to find spatially local queries and group
them together in rays to reduce the effects of divergence.
Rather than attempting to improve SIMT efficiency through
warp repacking, we accept that poor SIMT efficiency is inher-
ent to these workloads and provision a single-lane pipeline,
similar to the approach described in an AMD patent [52].
The datapath scheduler issues a single thread’s data into the
pipeline per cycle according to the active mask, while ignoring
lanes within the warp buffer that have an active mask bit of 0.
After all of the active threads within the warp buffer entry have
been issued to the datapath pipeline the warp buffer entry is
cleared. In this manner, high throughput can be achieved even
with warp instructions with a sparse active mask. The Result
Buffer stores the per-lane results and then writes the result
to the register file once all of the active threads in the warp
instruction have completed (similar to the corner turn buffer
described in Saleh et al. [52]).

The single-lane pipeline is shown in Figure 5. A single
CUDA thread can be initiated into the pipeline each cycle,
and the pipeline has multiple functional units (FUs) in each
stage to capitalize on the intra-thread parallelism that exists in
each of the different instruction types. Control logic enables
or disables FUs at each stage and multiplexes the results to
different pipeline register positions depending on the opcode
for the instruction, enabling the reuse of FUs for different
operations. The pipeline has a depth of 9 stages, and can
support a mix of operating modes simultaneously, i.e. a thread
executing a ray-box test can be scheduled the cycle after a
thread executing a ray-triangle test without waiting for the
first instruction to exit the pipeline. The baseline pipeline has
two operating modes: ray-triangle and ray-box intersection
testing. We base our ray-triangle intersection hardware on the
watertight triangle intersection algorithm proposed in [67]. We
remove the fallback to double precision from the algorithm
for tie-breaking when the edge equation is calculated to zero,
motivated by a recent Nvidia patent which describes a method
without such a fallback [30]. Our ray-box intersection test
hardware is based upon the commonly used slab intersection
method [26], [27], [36], [48]. An overview of the steps of the
ray-box and ray-triangle computations are shown in Figure 4
on the right. Our hardware supports testing a ray against four
AABBs simultaneously as well as sorting any hit results in
order of the closest hit values. Processing four nodes is useful
while traversing a BVH4 acceleration structure where each
node can have up to four children.

C. Hierarchical Search Unit Hardware Extensions

We augment the unit to additionally support euclidean
and angular (cosine similarity) distance calculations and key
comparisons with minimal hardware cost. Figure 6 shows the
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functional unit requirements for each stage of our unified
datapath pipeline for each of its five operating modes. There is
a significant overlap in the functional units necessary for the
euclidean and angular modes with the baseline ray-triangle and
ray-box calculations. The key-compare mode is implemented
using the ray-box comparators in stage 3, and requires no
additional functional units. Only two additional adders are
required in stage 3, and one in stages 5, 8 and 9 to support
the additional instructions. A 16-wide euclidean distance and
8-wide angular distance pipeline was selected for our design
because it allows for the most reuse in functional units from
the baseline RT unit. However HSU supports distance calcu-
lations for dimensions beyond these widths by accumulating
partial results across multiple cycles (see section IV-F).

D. Baseline RT Unit instructions

Our baseline RT unit design has a single RAY INTERSECT
instruction similar to [1], which performs either a ray-triangle
intersection test or four ray-box intersection tests depending on
the type of BVH node retrieved from memory. The operands
for the instruction are the same for both ray-triangle and ray-
box tests: a pointer to the node data to retrieve and information
about the ray to test. We pre-compute the inverse ray direction
as well as the shear and k constants in the same way as [67].

Stage Ray-Box Ray-Triangle Euclidean Angular Compare
1 24 Adds 9 Adds 16 Adds
2 24 Muls 9 Muls 16 Muls 16 Muls
3 36 Compares 6 Adds 8 Adds 8 Adds 36 Compares
4 4 Compares 6 Muls
5 3 Adds 4 Adds 4 Adds
6 3 Muls
7 2 Adds 2 Adds 2 Adds
8 2 Adds 1 Add 2 Adds (accum)
9 2 QuadSort 5 Compares 1 Add (accum)

Fig. 6: HSU unified datapath pipeline functional units
required for each operating mode. The total number of
Functional Units (FUs) for each stage is indicated in bold
(the maximum across all columns)

These values are constant for each ray and can be reused for
each intersection test performed by the ray. Four registers are
used per thread to return the result of the RAY INTERSECT
instruction, but their contents vary depending on whether a
ray-box or ray-triangle test was performed. If the node pointer
provided as a source operand pointed to a box node, a ray-box
intersection test is performed on each of that node’s children.
The results of the four tests are sorted by the RT unit and
pointers to the four children nodes are returned in order of
closet hit. If the ray did not intersect one of the child nodes a
null pointer is returned.

When the input node pointer is to a triangle node a single
ray-triangle intersection test is performed on the triangle
primitive within that node. The hit status indicates whether
the ray intersected or missed the triangle, and the triangle id
is used to identify which triangle was tested. Additionally the
unit returns the t parameter which indicates the distance/time
of the ray origin to the hit point on the triangle. Rather than
perform the expensive division operation necessary to calculate
this value within the RT unit, we return the ratio as t num and
t denom in the same way as [1].

E. HSU instructions

We augment our RT unit with three new instructions,
POINT EUCLID, POINT ANGULAR, and KEY COMPARE
to support distance calculations and key comparisons within
the HSU. The function of the first two of these instructions
is to compute the distance between two n-dimensional points,
a query point q and a candidate point c, to accelerate the
critical computation of nearest neighbor search algorithms.



TABLE I: HSU instructions

Instruction Description

RAY INTERSECT

The baseline instruction used to perform one ray-triangle test or four ray-box intersection tests.
Operands to this instruction include the ray data and a pointer to a BVH node.
The type of test performed is determined by whether the node fetched from memory is a triangle node or a box node.
Two different formats of data are returned in four registers depending on the type of test performed.

POINT EUCLID
Performs a 16-wide squared euclidean distance (eq. 1) test between a query point and a candidate point.
Higher dimensions are supported by aggregating the result across multiple instructions (section IV-F)
Reduces the result to a single scalar value across all 16 lanes.

POINT ANGULAR

Computes the 8-wide dot product between query and candidate point as well as the 8-wide squared norm
of the candidate point. Higher dimensions are supported by aggregating the result across multiple instructions.
Reduces the results to two scalar values. These quantities can be used to compute the angular distance (eq. 2),
but the scalar division and square root operations must be performed outside the HSU.

KEY COMPARE Fetches a node containing up to 36 separator values. Compares the key to the values and returns a bit vector
set to 0 if the key is less than the separator value and 1 otherwise. Used for traversing b-tree internal nodes.

The POINT EUCLID instruction returns the squared euclidean
distance between the query and candidate points, performing
the calculation shown in equation 1.

d2(q, c) =

n∑
i=1

(qi − ci)
2 (1)

The query point data is passed to the HSU directly through the
register file similar to the ray data for ray instructions. If the
query and candidate points have n ≥ 16 for euclidean or n ≥ 8
for angular, multiple instructions must be generated with the
accumulate operand bit set to 1. Section IV-F discusses the
operation of multi-beat instructions in more detail. The angular
distance between a candidate and query point is defined by
equation 2.

cosθ =
q · c√∑n

i=1 q
2
i

√∑n
i=1 c

2
i

(2)

The magnitude of the query point will remain constant for
all candidate points it is tested against, so its value is pre-
computed before the nearest neighbor search begins. Rather
than perform the scalar division and square root computations
shown in equation 2 within the HSU hardware, we instead
only compute the dot product between q and c (equation 3)
and the squared norm of the candidate point (equation 4).

dot sum =

n∑
i=1

ci ∗ qi (3)

norm sum =

n∑
i=1

ci ∗ ci (4)

These two quantities are returned by the instruction through
the register file as dot sum and norm sum respectively.

The third new instruction, KEY COMPARE is used while
traversing internal nodes of a b-tree. An internal node of a B-
tree with N child nodes has N − 1 separator values in sorted
(typically non-decreasing) order. The child node to traverse to
next is decided by comparing the query key against these sep-
arator values to determine which values the key lies between.
The KEY COMPARE instruction performs this operation by
computing the key value < seperator value operation for

up to 36 separator values at a time. The instruction has three
arguments: the query key value, a pointer to the internal node
of separator values, and the number of separator values within
the node. The instruction returns a bit vector with the result
for each separator value.

F. Multi-beat distance instructions

The accumulate operand field is used to aggregate distance
results when the data has width larger than the width of
the pipeline (16 for euclidean and 8 for angular). The HSU
will aggregate the results across multiple instructions rather
than writing into the result buffer when this field is set.
The compiler generates multiple HSU instructions in a row
according to the number of beats necessary to process the
distance for a point of a given dimension. For example, 9
instructions would be generated for an angular distance test on
a point with a dimension of 65 because ⌈65/8⌉ = 9. The first
8 instructions would have the accumulate bit set, and the last
instruction would have it cleared. When the last instruction is
executed, the accumulated result will be written to the output
buffer as normal. To ensure correctness, no instructions from a
different warp can enter the datapath after the first accumulate
instruction is executed. The accumulate bit is checked by the
sub-core round robin arbiter to ensure this ordering. If the bit is
set, the arbiter stops using round robin scheduling and instead
only schedules instructions from the sub-core that issued the
last instruction. We use a greedy then oldest warp scheduler,
which ensures the same warp issues all of its accumulate
instructions before scheduling a different warp. However, our
design is also compatible with other warp scheduling algo-
rithms. Non-greedy warp scheduling algorithms would simply
need to check the accumulate field in the warp scheduler as
well as the sub-core RT unit arbiter.

V. METHODOLOGY

A. Algorithm Selection

Three nearest neighbors implementations were selected for
this study as well as a B-tree traversal algorithm:

• GGNN [18] is the current state of the art approximate
nearest neighbors GPU implementation for high dimen-



sional data. It uses a hierarchical graph search structure
similar to [37] and [72] and a parallel cache in shared
memory for maintaining a priority queue of nodes to visit
and the current closest K neighbors. A key aspect of their
design is to assign an entire threadblock to each query,
rather than mapping each query to a single thread, to
exploit intra-query parallelism.

• FLANN [41] is a library for performing approximate
nearest neighbor searches in high dimensional spaces. It
provides support for several different acceleration struc-
tures on the CPU, but is limited to 3 dimensions and a
k-d tree search index for its CUDA GPU implementation.

• BVH-NN is a CUDA GPU nearest neighbor search
implementation we created based on the BVH ray tracing
search algorithm presented in RTNN [74] and [15].
Our implementation does not use the Optix library [45]
because it hides the BVH construction and traversal
details. We construct our leaf AABB widths at two times
the search radius with each data point in the center as
described in [74]. The points are then sorted based on
their Morton codes and a BVH is constructed using the
the algorithm described in [24]. We implement a stack-
based traversal which our kernel maintains per thread in
shared memory. Our hierarchical data structure is a single
monolthic bounding volume hierarchy and we do not pre-
process the queries to maximize ray coherence.

• B-Tree [9] We evaluate a B-tree implementation from
the Rodinia benchmark suite. The application has a
maximum of 255 separation values per internal node, so
the tree has a maximum branch factor of 256.

B. Datasets

The datasets we evaluate in this study are listed in Table II.
They include a range of large dimension data relevant to
computer vision problems taken from [2]. The column on the
right indicates whether Angular or Euclidean distance is used.
Additionally, we evaluate 3D point cloud datasets including
traditional graphics models from [56] and a cosmological n-
body simulation dataset from [16]. Random10k is random
point cloud generated from a continuous uniform distribution.
Two 1-dimensional datasets are used to evaluate the B-Tree
implementation from [9]. Although we use the same 3D
datasets to evaluate the FLANN and BVH-NN algorithms,
we distinguish between them using ”F” or ”B” prefixes in all
figures because they use fundamentally different hierarchical
data structures and have unique performance characteristics.

C. Simulation infrastructure

We use Accel-Sim [28] with GPGPUSim 4.0 and the Volta
V100 configuration for our performance evaluation. Table III
shows the simulator parameters we used for our performance
model. Our HSU performance model is based upon prior
work integrating a ray tracing unit with GPGPUSim [34],
[51], however we modify the unit to support per-instruction
intersection tests rather than manage a traversal stack within
the unit. To integrate our unit with Accel-Sim, we developed

TABLE II: Evaluation Datasets

Dataset Abbr. Dimensions #Points Dist
deep1b [2] D1B 96 9.9M A

fashion-mnist [2] FMNT 784 60K E
mnist [2] MNT 784 60K E
gist [2] GST 960 1M E

glove [2] GLV 200 1.18M A
last-fm [2] LFM 65 292K A
nytimes [2] NYT 256 290K A
sift1m [2] S1M 128 1M E
sift10k [2] S10K 128 10K E
random10k R10K 3 10K E
bunny [56] BUN 3 35.9K E
dragon [56] DRG 3 437K E
buddha [56] BUD 3 543K E
cosmos [16] COS 3 100K E

B-Tree 1M [9] B+1M 1 1M N/A
B-Tree 10k [9] B+10K 1 10K N/A

TABLE III: Simulator Configuration

# SMs 80
Sub-cores / SM 4

Register file / Sub-core 64 KB
Warp Scheduler Policy GTO

Max Warps / SM 64
RT Units / SM 1

Warp Buffer Size 8
Device Memory 32 GB HBM

L1D / Shared Memory Cache 128 KB
L1 Instruction Cache 128 KB

L2 Cache 24-way 6MB

a trace post-processor that can replace sequences of SASS
instructions with our HSU instructions described in Table I.

VI. EXPERIMENTAL RESULTS

A. Execution time spent on HSU operations

The performance of our design is limited by the share of
execution in the application that can be executed on HSU.
Figure 7 shows the simulated proportion of cycles in a
baseline V100 (i.e. without an RT Unit) spent on operations
that could be executed on the HSU. These values provide a
theoretical maximum for the performance HSU could achieve,
and include cycles spent on loading HSU operand data from
memory as well as arithmetic computations.

B. Roofline Analysis

The roofline analysis [66] shown in Figure 8 provides
insight into the compute and memory characteristics of the
evaluated workloads. We define the performance of the HSU as
the number of instructions completed (meaning the instruction
exited the last stage of the datapath pipeline) by the unit each
cycle. This definition provides a straightforward maximum
compute bound of 1 intersection op per cycle per HSU, and
is consistent regardless of the type of instruction processed
by the unit. We define operational intensity as the number of
intersection operations completed per cache line accessed from
the L2, with a maximum memory bandwidth of one cache line
per cycle.
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The figure shows that none of the applications evaluated
achieve full utilization of the HSU. Gist, mnist, and fashion-
mnist are closest to the compute bound limit. Software changes
to GGNN to better overlap instructions spent maintaining the
priority queue of nodes to visit with HSU distance instructions
could improve the utilization of the unit. The V100 GPU
model used for the roofline analysis has a cache line size of
128 bytes. A euclidean distance instruction requires 64 bytes
to be retrieved from memory, while an angular distance in-
struction requires 32 bytes. Therefore an operational intensity
greater than 4 for a euclidean application or 8 for angular is
indicative of data reuse between instructions. All of the BVH-
NN applications were under the memory-bound portion of the
plot, while not reaching the bottleneck line, indicating that
further optimization could improve their utilization of the HSU
but would ultimately remain limited by memory bandwidth.

C. Summary Performance

Figure 9 shows the speedup across all four search algo-
rithms when using the HSU instructions. On average GGNN,
FLANN, BVH-NN, and B+ improved 24.8%, 16.4% 33.9%,
and 13.5% respectively. The BVH-NN implementation ben-
efited the most from the HSU because the costly ray-box
intersection tests were able to be accelerated in hardware.
The BVH-NN kernel also processes the result of the ray-box
intersection tests to maintain a per-thread traversal stack and
determine which box nodes to process next. These operations

are not accelerated within the RT unit and instead execute
on the traditional SIMT SM. Each leaf node contains exactly
one point in BVH-NN, so there are very few distance tests
calculated in this algorithm. The BVH is able to cull the search
space effectively and reduce the total number of euclidean
distance tests to less than 200 for each query across all of the
3-D datasets.

GGNN maintains a parallel cache to track candidate points
and a priority queue of the K-nearest neighbors [18]. The
percentage of cycles spent on maintaining this cache (see Fig-
ure 7) is highly dependent upon application search parameters
such as the number of layers in the graph, number of neighbors
per point in the graph, and the desired amount of approxima-
tion in the result. As our unit does not accelerate the priory
queue management operations, the largest speedups are seen
in applications with a limited number of queue management
operations per query. The results of the Euclidean and Angular
distance tests are used to determine which candidate nodes in
the graph to visit next, so our HSU is effectively accelerating
the traversal of the hierarchical data structure in GGNN.

The FLANN kernel uses a k-d tree to determine which
points should tested as potential candidates for the nearest
neighbor of the query. Selecting a kd-tree child node during
traversal is much less computationally expensive than a ray-
box intersection test. K-d trees partition n-dimensional space
along a single dimension for each level of the tree. The query
point is simply compared against a split plane along a single
dimension which requires only a single scalar subtraction
and comparison. Due to its poor computational density we
chose not to accelerate this portion of the traversal inside the
HSU, and instead target the Euclidean and Angular distance
computations and reductions that take place upon reaching a
leaf node in the tree.

B+ Tree the smallest proportion of the algorithm that can
be offloaded to the HSU of any of the applications tested
(Figure 7). Further, the key compare operation performed
by the unit is the simplest of the HSU operations, thus the
instruction reduction that comes from using the HSU over the
traditional SM compute resources is smaller than the other
applications tested.

D. Graph Traversal Acceleration and High Dimension
Datasets (GGNN)

GGNN is the current state of the art GPU implementation
for approximate nearest neighbor search in datasets with a
large quantity of features. In recommendation systems the
current trend is towards training with increasingly larger
datasets with a growing number of features. Our HSU provided
an average speedup of 24.8% across all of the benchmarks
tested using GGNN. The largest performance benefit was
seen in Glove200 and NyTimes, both datasets which use
angular distance during the search. These datasets both have a
relatively large number of dimensions and the angular distance
mode has a higher arithmetic intensity than the euclidean
distance operating mode. However DEEP1B had the lowest
performance benefit from the HSU at a speedup of 7.8%.
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Fig. 9: Simulated speedup with HSU over a baseline without raytracing hardware support. The unit performs distance
tests in GGNN and FLANN, box-intersection tests in BVH-NN, and key-compare tests in B+tree.

DEEP1B was the largest dataset evaluated and quickly be-
came bottle-necked on the memory system after the distance
calculations were offloaded to the HSU.

E. BVH-NN

Our BVH Nearest neighbors implementation achieved an
average speedup of 33.9% when using the HSU to accelerate
ray box intersection tests. Although our unit is designed to
support four ray-box intersection tests per thread at a time, the
BVH-NN implementation used a binary BVH tree. Thus only
two child node boxes were traversed per thread at a time, and
the application did not fully utilize the ray-box test hardware.
A BVH4 tree would likely have better performance in our unit
for this reason. Our BVH-NN implementation used a BVH
construction algorithm known for its fast construction time but
not for its quality [24]. This allows the BVH to be created for
large datasets in a reasonable amount of time, but does not
guarantee the fastest traversal. A more optimized BVH that
uses surface area heuristic to determine partitioning would
further improve performance. Additionally, unlike [74] our
BVH-NN implementation did not perform any pre-processing
steps to reduce ray-incoherence or select an optimized search
radius. Although the HSU skips lanes with an inactive mask
when scheduling threads into the single lane pipelined data-
path, ray-incoherence causes non-coalesced memory accesses
that reduce overall performance of the application.

F. FLANN and K-D Tree Traversal acceleration

The HSU achieved an average speedup of 16.4% over
the non-rt accelerated k-d tree implementation, smaller than
both the graph-based and BVH-based data structures. This is
because the k-d tree structure uses a very simple test during
traversal to determine whether to visit the left or right child
node. K-d trees are split upon a single axis at each level,
so only a single scalar value needs to be tested against the
query during traversal. The HSU provides some benefit by
accelerating the distance tests performed at when reaching the
leaf nodes of the k-d tree, but there is little benefit of offloading
the scalar value traversal test to a dedicated hardware unit.

G. Comparison with Software RT Unit Related Work

Previous works [6], [15], [21], [40], [63], [71], [74] have
adapted their algorithm to use RT Unit hardware acceleration

through the Optix API [45]. The HSU maintains ISA compati-
bility with the baseline RT Unit, thus it is fully compatible with
any existing RT Unit application. RTNN [74] can execute
directly on the HSU without changes and have equivalent
performance to an RT Unit. The HSU has no high-dimensional
nearest neighbor RT Unit software implementations to com-
pare against because the baseline hardware and Optix API is
restricted to three dimensions and cannot run GGNN. RTIndeX
[21] is a state of the art GPU database indexing application

that expresses keys as triangle primitives and uses ray casting
for lookups. The authors identify several disadvantages of
their approach due to the restrictive programming interface
and hardware. First, Optix only supports single precision float
values but the authors need to index 32-bit or 64-bit integer
keys. RTIndeX circumvents this issue by mapping an integer
value to 3 single precision float values. A triangle primitive
consisting of 9 floats is then created with the 3d key value
as its center. This method is both memory inefficient, because
it maps a 32 or 64 bit value to a 288-bit triangle primitive,
and messy because the 3D mapping no longer aligns adjacent
keys in a direct line in space. HSU avoids these inefficiencies
because it supports point primitive data types natively. Second,
the authors note that the ray tracing mechanism and structure
of the BVH is proprietary information and not made visible
to the public [21], [46], therefore it is difficult to anticipate
performance of different applications and workload conditions.

Proprietary GPU BVH implementations make it difficult
to directly compare the performance of HSU and state of
the art software approaches such as RTIndeX [21]. GPU
simulators must create and traverse an open source BVH
implementation which is likely substantially different from
those used by proprietary GPU hardware vendors [51]. To
overcome this obstacle we re-implemented RTIndeX in CUDA
without Optix driver calls, instead using the same LBVH [32]
used to evaluate the HSU. We then evaluated the performance
of RTIndeX on our baseline RT Unit hardware using triangle
primitives, and compared against an HSU version which repre-
sents key values natively. The HSU RTIndeX implementation
using point values for keys had a 36.6% speedup over the
RT Unit baseline while performing 163,840 lookup queries
with 32-bit keys. As previously discussed, HSU has a 9:1
memory advantage for the key store because the baseline RT
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Fig. 10: Speedup with HSU at different datapath widths
over a non-RT unit baseline. The datawidths in the legend
refer to the width of the Euclidean operating mode, the
width of the Angular operating mode is half this value.

unit hardware must represent 32-bit keys as 288-bit triangle
primitives. This memory reduction allows leaf nodes to be
processed faster during traversal because only a single point
needs to be retrieved from memory rather than an entire
triangle. Additionally, the HSU benefits from a smaller amount
of input data transferred from host to device over PCIE, which
scales linearly with the number of keys in the database.

H. Datapath Width Sensitivity

The width of the datapath determines how many
POINT EUCLID or POINT ANGULAR instructions are
needed to compute the distance between two points of a
given dimension. A pipeline width of 16 was selected for
the euclidean distance operating mode because it allowed
for the most reuse of existing functional units with the ray
intersection operating mode. The angular operating mode
requires computing two values, the dot product between the
candidate and query as well as the candidate point norm, so
its effective width is half of the euclidean width to properly
re-use functional units. Figure 10 shows the effect of datapath
width on GGNN with high dimensional data. The dimensions
of each dataset is listed in Table II. A larger datapath width
results in fewer HSU instructions needed to compute and
aggregate the distance. In general a larger width corresponds
to a lower latency for distance computations which improves
overall performance. This trend is seen in datasets such as
sift10k, last-fm, and glove200. These improvements tend to
be marginal as the increase in width has diminishing returns,
but add a high cost to the total datapath area and power.
In some cases increasing the datapath width can lead to
decreased performance. This is because the larger width is
also effectively increasing the size of the warp buffer because
each entry can store a larger width of data. As will be further
discussed in section VI-I, the HSU time shares access to the
L1D cache with the load-store unit. Euclidean and angular
distance instructions tend to miss in the L1 cache, thus a
large number of outstanding HSU instruction memory requests
can reduce the overall hit rate of the L1 cache for non-RT
instructions.

I. Warp Buffer Size Sensitivity

Figure 11 shows the effect of warp buffer sizes (number of
entries) on the performance of three different hierarchical near-

est neighbor search algorithms: graph based (GGNN), bound-
ing volume hierarchy (BVH-NN), and k-d tree (FLANN). A
single entry warp buffer is much too restrictive as it allows
only one instruction from one sub-core to fetch its operands
from the memory system at a time, without capitalizing on
any memory level parallelism. Thus a single entry warp buffer
is less effective than the baseline design because the load
store unit can generate multiple accesses under a miss as
long as there is available space in the miss status holding
registers (MSHR). A warp buffer size of 4 is victim to a similar
effect in applications that are memory bound after the distance
computation is offloaded to the HSU such as MNIST, fashion-
MNIST, and DEEP1B. We found a warp buffer size of 8 to
provide the best amount of memory level parallelism for the
least power and area cost across all applications. It performed
the best in GGNN and BVH-NN and only marginally worse
in FLANN. Previous work has also determined a warp buffer
size of 8 to be the sweet spot in terms of performance and area
savings [51]. While the authors of [51] suggested maintaining
the warp buffer inside the ray-tracing unit, we note that these
entries could alternatively be maintained in a reserved space
within the register file to reduce the area cost of the baseline
ray tracing unit.

An interesting effect occurs wherein larger warp buffer
sizes result in poorer performance for some high-dimension
datasets such as sift-1m, fashion-MNIST, and MNIST. In
these datasets, a large number of memory requests from the
HSU can reduce the performance of non-rt instructions. HSU
instructions tend to miss in the cache, as they are accessing
candidate points that have not been previously visited. At high
warp-buffer sizes these cache accesses can lead to the MSHR
to fill which restricts the memory-level parallelism of non-rt
instructions. To avoid this contention, a private cache dedicated
to the RT unit could be used, or a method of bypassing the
L1 data cache for accesses generated from the ray tracing unit
could be employed.

J. Memory System Effects

HSU can reduce the number of L1D cache accesses by
coalescing spatially local accesses in sequential instructions
present in the baseline into a single access in a HSU CISC
instruction. Figure 12 shows the number of L1D accesses of
the HSU applications normalized to a non-RT baseline. The
BVH-NN applications most prominently display this effect, as
several adjacent global load instructions are coalesced into a
single access. This improves the efficiency of the MSHR by
reducing the number of instructions that access the cache and
hit on a pending miss request.

The high dimension applications in GGNN exhibit high
L1D and L2 cache miss rates, whereas the lower dimension
applications make better use of the caches (see Figure 13).
Note that accesses that hit in the MSHR are considered hits,
therefore by reducing the number of accesses in some appli-
cations the miss rate has increased (most notably in the BVH-
NN applications). Figure 14 shows the average memory row
access locality using a First Row-First Come First Served (FR-
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Fig. 11: Speedup with HSU at different warp buffer sizes
over a non-RT unit baseline. Evaluated for three different
hierarchical data structures: graph (a), BVH (b), and k-d
tree (c)
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FCFS) memory controller scheduler, which prioritizes queued
accesses for the currently open row before oldest requests.
HSU CISC instructions change the order of memory accesses
seen at the memory controller, causing slight differences in
available locality. This does not result in a large material
difference since most of the locality is captured by coalescing
and in the MSHRs.

K. Area and Power Results

We implemented and made publicly available [54] the
unified single lane datapath pipeline (Figure 5) in RTL to
assess the power and area impact of augmenting a baseline
ray tracing unit with our new instructions. We generated two
designs: a baseline datapath that supports only ray-triangle and
ray-box intersection tests, and a HSU design that adds support
for the additional instructions. Our new HSU instructions re-
use the functional units used in the baseline ray-intersection
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tests wherever possible, thus additional functional units are
only required in stages 3,5,8, and 9 (Figure 6).

We implemented our design using Chisel [4] due to its
flexibility creating parameterized designs and rapid verification
capabilities. We synthesized our design with a 1 GHz clock
using a 15 nm process design kit [39] in Cadence Genus.
FUs for floating point arithmetic were sourced from Berkeley
Hardfloat [20], [59]. We verified the correctness of our
RTL design with test cases covering all ray-box, ray-triangle,
Euclidean, Angular, and mixed modes. Figure 15 shows the
area cost of HSU in several classes of resources normalized
to the baseline design. The total area increase was 37% of
the baseline datapath. Note that this represents an increase
in area only for the datapath portion of the ray tracing unit,
which is a small portion of the overall area of the entire
ray tracing unit. Furthermore, this area overhead does not
represent a production-ready design; to allow for flexible
prototyping and design space exploration, we modeled our
design without aggressive area optimizations. For example,
we (1) adopted a fixed-latency pipeline architecture, (2) used
individual registers at every stage for each operating mode
and (3) performed costly floating-point number rounding at
the end of each stage. Future optimizations could reduce
the area overhead by (1) adopting a reservation table-based
pipeline with flexible latency [57], (2) multiplexing pipeline
stage registers for different operating modes, and (3) using a
more efficient rounding scheme for intermediate results.

Figure 16 shows the dynamic power of each operating mode
for our baseline and HSU. We calculated dynamic power for
each operating mode by generating a random series of input
stimulus. HSU increases the baseline ray-box and ray-triangle
modes by 10 and 8 mW respectively. The power requirements
for the Euclidean and Angular operating modes are 79 and 67
mW respectively. This is only 5 mW more than the baseline
ray-box mode power cost.

VII. RELATED WORK

To our knowledge no other work has studied the impact
of adjusting the GPU ray tracing unit hardware to make
it more amenable to general purpose hierarchical search.
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However, there have been several works that have reformulated
their search algorithm as a ray-tracing problem to fit into
the graphics pipeline and make use of ray-tracing hardware
acceleration. In [6] the authors optimize the problem of per-
forming dependence analysis on sequences of operations. They
cleverly recognize the equivalence of identifying dependencies
between subsets of data and the visibility problem in computer
graphics, which allows them to reduce the problem to a ray-
casting problem and make use of RT-Unit acceleration. In [74]
and [15] the authors present a nearest neighbors radius search
algorithm formulated as a ray tracing problem and using the
Optix library [45]. These software approaches are limited in
the functionality they can provide and are not easily adaptable
to a broad range of hierarchical search algorithms.

There are other studies that have looked at using custom
hardware to improve the performance of nearest neighbor
search. In [13] the authors propose hardware and a series of
instructions to accelerate compression and decompression of
3-d point cloud data within the context of autonomous vehicle
image recognition. The instructions proposed solely focus on
the compression and decompression of floating point data to
reduce pressure on the memory system. They do not provide
custom instructions for performing distance tests in hardware
or support for non 3-D datasets. Further, this study focuses
on vector instructions in CPU implementations targeting 3D
data used for autonomous driving systems. Large datasets such
as those used for recommendation systems typically have a
high number of features and benefit greatly from the increased
memory bandwidth and parallelism available on the GPU.

Several works have proposed hardware accelerators for tree
construction algorithms. In [12], [35], [61] the authors show
the benefit of customized hardware for k-d and BVH tree
construction in ray tracing applications. In contrast to these

works, HSU targets the traversal phase of hierarchical search
algorithms and would be compatible with dedicated hard-
ware accelerators used during the construction phase. Other
works have developed programmable traversal and intersection
hardware accelerators, but they are typically closely coupled
to a specific data structure. Early designs, such as [53]
and [68], used SIMD packet tracing for k-d tree traversal
and had dedicated traversal, intersection, and ray generation
units. In [43] and [55] the authors propose a single-ray
architecture for k-d tree traversal, similar to the HSU, because
they recognized the poor performance per area of SIMD packet
tracing caused by frequent ray incoherence. The work in [42]
proposes a unified pipeline for traversal and intersection tests
to improve functional unit reuse and reduce load imbalance
problems. HSU builds upon this approach to support additional
operations and a broader class of hierarchical data structures
and primitives while reusing existing hardware in a baseline
ray tracing unit. The architecture proposed in [69] accelerates
k-d tree traversal for 3-D point cloud registration. They co-
design a novel two-level k-d tree data structure and an accel-
erator to traverse and search the tree. Their design is limited
to three dimensions and includes hardware recursion units
that are tightly coupled to the layout of their data structure.
Unlike specialized fixed-function accelerators, HSU provides
the flexibility to adapt to different hierarchical data structures
while reusing many of the hardware resources that already
exist in GPU ray tracing units and would otherwise be unused.

VIII. CONCLUSION

In this work we examined the potential to expand the pro-
grammability of the ray tracing unit to hierarchical search data
structures beyond bounding volume hierarchies. We presented
a novel unified datapath capable of reusing the functional units
necessary to perform ray-box and ray-triangle intersection
tests to also compute high dimension distances and perform
key comparisons. We showed how this expanded functionality
can be used to accelerate three different nearest neighbor
algorithms and a B-tree key-value store. We discussed the
limitations of the current ray tracing units in terms of both
performance and programmability. The expanded flexibility
of our design allows general purpose GPU programmers to
develop hardware accelerated search algorithms without re-
formulating their problem or using unfamiliar graphics APIs.
We provided a power and area analysis to show the minimal
overhead to the datapath in order to support these additional
features. A dedicated GPU hierarchical search unit accessible
through a standard compute programming interface has the
potential to benefit a much broader class of applications than
a traditional ray tracing unit.
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