


In Volta/Ampere for example, each SM has eight register file

banks, but each sub-core has access to only two [34], [35].

Even with compiler-orchestrated register swizzling among

banks, GPUs still need to make use of operand collectors [24],

[47] to keep multiple warps in the operand read stage and

maximize register file bandwidth. Increasing the number of

warps requesting operands each cycle is a straightforward

way to improve register bank utilization. However, doing so

involves scaling the number of collector units in each sub-

core, which adds area and energy to the SM (evaluated in

Section VI-B2), decreasing the gains made by moving to a

sub-core design in the first place. Instead of blindly scaling

collector units, we develop a novel Register Bank Aware

(RBA) warp scheduling mechanism to make better use of

the limited banks and collector units available in GPU sub-

cores. Although warp scheduling has been extensively studied

for other purposes [37], [39], [42], [46], [48], [49], [52],

[53], we are the first paper that uses it as a mechanism to

mitigate register bank conflicts, which are exacerbated by the

partitioned cores in recent GPU generations.

Imbalances across the work assigned to a sub-core can

lead to under-utilization and reduced performance. Through

extensive microbenchmarking (see Section III-B), we have

determined that contemporary Volta and Ampere GPUs assign

warps to sub-cores in a simple round-robin fashion. This

assignment balances the work across sub-cores, provided

warps execute a similar number of instructions. However,

not all workloads have well-balanced warps. In particular,

highly-optimized workloads that make use of warp specialized

programming [11], [14], [19], [20], [31] can exhibit severe

imbalance. Warp specialized programming is a technique used

to reduce the impact of control-flow divergence by grouping

threads with a similar control-flow path into the same warp.

Although the SIMD efficiency [27] of warp-specialized pro-

grams is high, there can be significant variations in the number

of instructions executed by warps in the same thread block.

This variation is easily smoothed in a monolithic core where

every warp has access to all the SM’s resources, but can lead

to severe imbalance in sub-core based SMs.

The assignment of warps to sub-cores adds an additional

layer to the GPU thread-scheduling hierarchy. Although these

sub-cores act as independent units, thread blocks are assigned

at the SM granularity. Once a thread block is assigned to an

SM, each sub-core is tasked with a subset of the warps that

make up the thread block. Table I contrasts the different levels

of thread scheduling in a contemporary GPU.

Sub-core warp assignment shares similarities with warp

scheduling and thread block scheduling (Table I), but its

position in the hierarchy makes it fundamentally different.

Sub-core scheduling operates at a warp granularity, however,

the assignment of a warp to a sub-core happens only once in

the lifetime of the warp and cannot be changed. As a result, de-

cisions are made less frequently than warp scheduling and each

individual decision has a greater impact. Sub-core scheduling

frequency is more similar to thread block scheduling, however

the granularity is different. Thread block scheduling can do

nothing about disparities among the warps within a thread

block, since it only decides which SM a thread block will be

assigned to.

This paper makes the following contributions:

• The first study to improve GPU sub-cores’ effect on

performance, quantifying the two primary sources of

performance degradation: increased register file bank

conflicts, and sub-core issue imbalance.

• A novel bank-aware warp scheduler to mitigate the effects

of increased bank conflicts in sub-core partitioned register

files. A quantitative cost-benefit analysis of the design

compared to scaling the number of collector units is

presented.

• A hashed sub-core scheduler to eliminate pathological

issue imbalances.

• Evaluation of the novel scheduling techniques resulting

in an average speedup of 11.2% across all applications

and 19.3% on applications sensitive to SM partitioning.

II. MOTIVATION AND BACKGROUND

A. The Streaming Multiprocessor Sub-Core

There has been a trend in scaling not only the number of

SMs in each new generation of GPUs, but also the capability

of each SM. For example, in 2006 Nvidia introduced their

first unified graphics and parallel compute architecture with the

Tesla [45]. The Tesla architecture SM contained a single multi-

threaded issue unit, eight Streaming Processor (SP) cores, and

two Special Functional Units (SFUs). In contrast, each SM

in the Ampere A100 (released in 2020) contains four warp

schedulers / issue units, four tensor cores, 64 FP32 units,

64 INT32 Units, and 32 FP64 units [3]. As the number of

schedulers and functional units within each SM has increased,

the need to subdivide the SM to reduce area and power require-

ments arose. The Maxwell architecture was the first Nvidia

design to partition the SM into sub-cores, and all subsequent

Nvidia architectures have used a similar SM partitioning. The

Maxwell architecture achieved twice the performance per watt

of the previous generation, Kepler, while using the same 28 nm

process [5]. Sub-core partitioning reduced the die area of each

SM while also improving power efficiency. By decreasing the

area per SM while providing about 90% of the performance of

the Kepler SM, Nvidia was able to increase the total number

of SMs from two in the Kepler GK107, to five in the Maxwell

GM107, with only a 25% increase in die area.

AMD has also adopted a partitioned Computational Unit

(CU) in the RDNA architecture, which it refers to as the dual

compute unit. Each dual compute unit contains four wavefront

schedulers, one for each of the four SIMD units [2]. Similar to

Nvidia’s partitioned SM architecture, the two sub-cores share

a common L1 data cache and shared memory scratchpad. Each

of the four SIMD units in the dual compute unit has its own

20-entry wavefront buffer. Likewise, the GCN architecture also

has 4 SIMD units per CU with a 10-entry wavefront buffer per

SIMD unit [1]. As work-groups are sent to a dual compute unit

the wavefronts within the work-group must be moved into the

















(a) Baseline: pb-mriq (b) RBA: pb-mriq (c) Fully-connected: pb-mriq

(d) Baseline: rod-srad (e) RBA: rod-srad (f) Fully-connected: rod-srad

Fig. 14: Number of 4-byte register file read accesses per cycle in two applications: pb-mriq and rod-srad. RBA improves

performance beyond fully-connected in rod-srad by increasing average register file read utilization across the entire

application (shown in red).

4) RBA Score Latency Sensitivity Study: RBA uses score

values from register bank contention to make scheduling

decisions. Although computing the scores is a relatively simple

process, it is possible that the distance between the register

file and the instruction scheduler may cause score updates

to influence the critical path. In such a scenario, an RBA

implementation may need to latch or pipeline the score update

to avoid changing the cycle time. To quantify the effect a

delay in score updates has on RBA, we evaluate RBA with

score update latencies swept from 0 to 20 cycles. Across the

top 15 applications where RBA shows a benefit, on average

the performance decreased by < 0.1% as the latency was

increased. We find that the majority of the applications tend

to have stable periods of register file access, in which a

slightly stale score value still provides a reasonable estimate

for making scheduling decisions. Of the 15 applications in the

latency study, only one, ply-2Dconv, had a performance impact

of >1%. In this application the speedup of RBA decreased

from 24.2% to 19.2% with a latency of 20 cycles.

5) RBA Bank Scaling Sensitivity Study: We found that the

effectiveness of RBA is reduced (from 19.3% to 15.4% on

average) when the number of banks per sub-core is doubled

from 2 to 4. As the number of banks increases the read-

operand stage becomes less of a bottleneck and there are fewer

opportunities for RBA to improve register file utilization.

C. Scheduler Issue Balancing Results

TPC-H is not limited by the read operand stage and there-

fore benefits only a few percent from the RBA warp scheduler

design. Both sub-core assignment hash functions maintain

performance across balanced applications. This can be seen

from the performance of Shuffle on the Parboil, Cutlass,

Cugraph, and Rodinia applications in figure 10.

Figures 15 and 16 show the speedup of all designs for

each query in the TPC-H benchmark suites with compressed

and uncompressed databases. SRR and Shuffle had average

speedups of 33.1%, 27.4% respectively on the compressed

benchmark, and 17.5%, 13.9% respectively on the uncom-

pressed benchmark. SRR performed the best in all queries

because the assignment function was designed to match to the

warp issue distribution of the benchmarks, i.e. one long run-

ning warp every 4th warp. However, the shuffle hash function

is more broadly applicable to other imbalance patterns, and

was within 5% of SRR on average.

The total number of instructions issued from each of the

four schedulers provides insight into how well each design

distributes work among the sub-cores. The coefficient of

variation quantifies the amount of variation between the four

schedulers in relation to the average number of instructions

issued from each warp scheduler. A smaller value indicates

better balancing across the four sub-cores in each SM. Fig-

ure 17 shows the coefficient of variation for SRR and Shuffle

on the uncompressed TPC-H benchmarks and is calculated as

cv = σ

µ
, where σ is the standard deviation and µ is the mean.

The SRR hashing function reduced the coefficient of vari-

ation from .80 to .11 on average across all queries. Query

8, which had the largest baseline coefficient of variation of

1.01, experienced the largest performance improvement due

to sub-core balancing with a 30.8% speedup. By improving

the balance of instructions issued from each sub-core, both

shuffle and SRR improved upon the baseline performance

within four percent of each other. A larger reduction in sub-





however they cannot address fundamental programmatic im-

balances between warps and sub-cores. A work stealing hard-

ware structure seems like an obvious solution to the sub-core

issue balancing problem [21]. It is possible to design a system

to transfer a warp’s context from one sub-core to another

dynamically to maintain balanced execution. However, any

work stealing based design would be forced to transfer the

the register file state of all of the threads within the migrating

warp. Since the register file is partitioned across the sub-cores

and each thread maintains its own private register file state,

such a transfer would be prohibitively expensive. A work

stealing design would have a much higher implementation

overhead than the hashed sub-core assignment discussed in

this work. Random interleaving has been studied as a method

to improve memory bandwidth [51] but has not been used for

sub-core work assignment.

VIII. CONCLUSION

This work identified sub-core partitioning as a source of

SM underutilization in several generations of modern GPU

architectures. Issue imbalance stems from the distribution of

warps within a thread block to discrete scheduler and execution

blocks, and therefore cannot be resolved through alternative

warp or thread block scheduling algorithms. Applications

with high levels of warp-level-divergence are particularly

susceptible to underutilization due to sub-core imbalance,

such as those used in database query processing. A hardware

mechanism to reduce the likelihood of pathological imbalances

with hashed sub-core scheduling was proposed.

Additionally, the partitioning of register file and operand

collector structures has created bottlenecks in the read operand

stage of several common GPU applications. A cost benefit

analysis of scaling collector units to reduce bank conflicts was

presented. A register file bank aware warp scheduling design

was outlined to more efficiently utilize operand collector units

with a constrained amount of resources, such as those found

in partitioned SMs.

ACKNOWLEDGMENT

We thank our anonymous reviewers of MICRO 2022 and

HPCA 2023 for their feedback and valuable comments. This

work was supported, in part, by NSF CCF #1910924 and

CCF #1943379 (CAREER), and the Applications Driving

Architectures (ADA) Research Center, a JUMP Center

cosponsored by SRC and DARPA.

REFERENCES

[1] “AMD Graphics Cores Next (GCN) Architecture Whitepaper,” https:
//www.amd.com/Documents/GCN Architecture whitepaper.pdf.

[2] “Introducing RDNA Architecture,” https://www.amd.com/system/files/
documents/rdna-whitepaper.pdf.

[3] “NVIDIA A100 Tensor Core GPU Architecture,” https:
//images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-
ampere-architecture-whitepaper.pdf.

[4] “NVIDIA GeForce GTX 1080 Whitepaper,” http://international.
download.nvidia.com/geforce-com/international/pdfs/GeForce GTX
1080 Whitepaper FINAL.pdf.

[5] “NVIDIA GeForce GTX 750 Ti Featuring First-Generation
Maxwell GPU Technology, Designed for Extreme Performance
per Watt,” http://international.download.nvidia.com/geforce-
com/international/pdfs/GeForce-GTX-750-Ti-Whitepaper.pdf.

[6] “NVIDIA H100 Tensor Core GPU Architecture Overview,” https://
resources.nvidia.com/en-us-tensor-core/gtc22-whitepaper-hopper.

[7] “NVIDIA Tesla V100 GPU Architecture,” https://images.nvidia.com/
content/volta-architecture/pdf/volta-architecture-whitepaper.pdf.

[8] “NVIDIA Turing GPU Architecture,” https://www.nvidia.com/
content/dam/en-zz/Solutions/design-visualization/technologies/turing-
architecture/NVIDIA-Turing-Architecture-Whitepaper.pdf.

[9] “NVIDIA’s Next Generation CUDA Compute Architecture:
Kepler GK110/210,” https://www.nvidia.com/content/dam/en-
zz/Solutions/Data-Center/tesla-product-literature/NVIDIA-Kepler-
GK110-GK210-Architecture-Whitepaper.pdf.

[10] “TPC Benchmark Specification H,” http://tpc.org/TPC Documents
Current Versions/pdf/tpc-h v3.0.0.pdf.

[11] “cuDF - GPU DataFrames,” https://github.com/rapidsai/cudf, 2021.

[12] “CUTLASS 2.8,” https://github.com/NVIDIA/cutlass, 2021.

[13] “DeepBench,” https://github.com/baidu-research/DeepBench, 2021.

[14] “RAPIDS Accelerator plugin For Apache Spark,” https://github.com/
NVIDIA/spark-rapids, 2021.

[15] “Snappy Compression Library,” https://github.com/google/snappy, 2021.

[16] “cuGraph - GPU Graph Analytics,” https://github.com/rapidsai/cugraph,
2022.

[17] M. Abdel-Majeed, A. Shafaei, H. Jeon, M. Pedram, and M. Annavaram,
“Pilot Register File: Energy Efficient Partitioned Register File for
GPUs,” in 2017 IEEE International Symposium on High Performance

Computer Architecture (HPCA), 2017, pp. 589–600.

[18] A. Ariel, W. W. L. Fung, and T. M. Aamodt, “Visualizing Complex Dy-
namics in Many-Core Accelerator Architectures,” in IEEE International

Symposium on Performance Analysis of Systems and Software (ISPASS),
2010, pp. 164–174.

[19] M. Bauer, H. Cook, and B. Khailany, “CudaDMA: Optimizing GPU
memory bandwidth via warp specialization,” in SC ’11: Proceedings

of 2011 International Conference for High Performance Computing,

Networking, Storage and Analysis, 2011, pp. 1–11.

[20] M. Bauer, S. Treichler, and A. Aiken, “Singe: Leveraging Warp Spe-
cialization for High Performance on GPUs,” in Proceedings of the

19th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, ser. PPoPP ’14. New York, NY, USA: Association for
Computing Machinery, 2014, p. 119–130.

[21] R. D. Blumofe and C. E. Leiserson, “Scheduling Multithreaded Com-
putations by Work Stealing,” J. ACM, vol. 46, no. 5, p. 720–748, Sep.
1999.

[22] S. Che, M. Boyer, J. Meng, D. Tarjan, J. W. Sheaffer, S.-H. Lee, and
K. Skadron, “Rodinia: A benchmark suite for heterogeneous computing,”
in 2009 IEEE International Symposium on Workload Characterization

(IISWC), 2009, pp. 44–54.

[23] J. Choquette, O. Giroux, and D. Foley, “Volta: Performance and Pro-
grammability,” IEEE Micro, vol. 38, no. 2, pp. 42–52, 2018.

[24] J. H. Choquette, M. O. Gautho, and J. E. Lindholm, “Methods
and apparatus for source operand collector caching ,” U.S. Patent
20130159628A1 Jun 20, 2013.

[25] B. W. Coon, J. R. Nickolls, J. E. Lindholm, R. J. Stoll, N. Wang, J. H.
Choquette, and K. E. Nickolls, “Thread group scheduler for computing
on a parallel thread processor ,” Patent, May, 2012.

[26] N. Duong and R. Kumar, “Register Multimapping: A technique for
reducing register bank conflicts in processors with large register files,”
in 2009 IEEE 7th Symposium on Application Specific Processors, 2009,
pp. 50–53.

[27] W. W. Fung, I. Sham, G. Yuan, and T. M. Aamodt, “Dynamic Warp
Formation and Scheduling for Efficient GPU Control Flow,” in 40th

Annual IEEE/ACM International Symposium on Microarchitecture (MI-

CRO 2007), 2007, pp. 407–420.

[28] M. Gebhart, D. R. Johnson, D. Tarjan, S. W. Keckler, W. J. Dally,
E. Lindholm, and K. Skadron, “Energy-efficient mechanisms for man-
aging thread context in throughput processors,” in 2011 38th Annual

International Symposium on Computer Architecture (ISCA), 2011, pp.
235–246.

[29] M. Gebhart, S. W. Keckler, and W. J. Dally, “A compile-time managed
multi-level register file hierarchy,” in 2011 44th Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO), 2011, pp. 465–
476.



[30] S. Grauer-Gray, L. Xu, R. Searles, S. Ayalasomayajula, and J. Cavazos,
“Auto-tuning a high-level language targeted to GPU codes,” in 2012

Innovative Parallel Computing (InPar), 2012, pp. 1–10.

[31] T. Graves and A. Bellina, “Cost Effective Data Processing with Apache
Spark and GPU,” GTC, 2022.

[32] M. R. Guthaus, J. E. Stine, S. Ataei, B. Chen, B. Wu, and M. Sarwar,
“OpenRAM: An open-source memory compiler,” in 2016 IEEE/ACM

International Conference on Computer-Aided Design (ICCAD), 2016,
pp. 1–6.

[33] H. Jeon, G. S. Ravi, N. S. Kim, and M. Annavaram, “GPU Register File
Virtualization,” in Proceedings of the 48th International Symposium on

Microarchitecture, ser. MICRO-48. New York, NY, USA: Association
for Computing Machinery, 2015, p. 420–432.

[34] Z. Jia, M. Maggioni, B. Staiger, and D. P. Scarpazza, “Dissecting the
NVIDIA Volta GPU Architecture via Microbenchmarking,” https://arxiv.
org/abs/1804.06826, 2018.

[35] Z. Jia and P. V. Sandt, “Dissecting the Ampere GPU Architecture
through Microbenchmarking,” GTC, 2021.

[36] N. Jing, S. Jiang, S. Chen, J. Zhang, L. Jiang, C. Li, and X. Liang,
“Bank Stealing for a Compact and Efficient Register File Architecture
in GPGPU,” IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, vol. 25, no. 2, pp. 520–533, 2017.

[37] A. Jog, O. Kayiran, A. K. Mishra, M. T. Kandemir, O. Mutlu, R. Iyer,
and C. R. Das, “Orchestrated Scheduling and Prefetching for GPGPUs,”
in Proceedings of the 40th Annual International Symposium on Com-

puter Architecture, ser. ISCA ’13. New York, NY, USA: Association
for Computing Machinery, 2013, p. 332–343.

[38] M. Khairy, Z. Shen, T. M. Aamodt, and T. G. Rogers, “Accel-Sim:
An Extensible Simulation Framework for Validated GPU Modeling,” in
2020 ACM/IEEE 47th Annual International Symposium on Computer

Architecture (ISCA), 2020, pp. 473–486.

[39] M. Lee, G. Kim, J. Kim, W. Seo, Y. Cho, and S. Ryu, “iPAWS:
Instruction-issue pattern-based adaptive warp scheduling for GPGPUs,”
in 2016 IEEE International Symposium on High Performance Computer

Architecture (HPCA), 2016, pp. 370–381.

[40] M. Lee, S. Song, J. Moon, J. Kim, W. Seo, Y. Cho, and S. Ryu,
“Improving GPGPU resource utilization through alternative thread block
scheduling,” in 2014 IEEE 20th International Symposium on High

Performance Computer Architecture (HPCA), 2014, pp. 260–271.

[41] S. Lee, K. Kim, G. Koo, H. Jeon, W. W. Ro, and M. Annavaram,
“Warped-Compression: Enabling Power Efficient GPUs through Reg-
ister Compression,” in Proceedings of the 42nd Annual International

Symposium on Computer Architecture, ser. ISCA ’15. New York, NY,
USA: Association for Computing Machinery, 2015, p. 502–514.

[42] S.-Y. Lee, A. Arunkumar, and C.-J. Wu, “CAWA: Coordinated Warp
Scheduling and Cache Prioritization for Critical Warp Acceleration of
GPGPU Workloads,” vol. 43, no. 3S, p. 515–527, Jun. 2015.

[43] S.-Y. Lee and C.-J. Wu, “CAWS: Criticality-Aware Warp Scheduling
for GPGPU Workloads,” in Proceedings of the 23rd International

Conference on Parallel Architectures and Compilation, ser. PACT ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
175–186.

[44] B. Lin, M. B. Healy, R. Miftakhutdinov, P. G. Emma, and Y. Patt,
“Duplicon Cache: Mitigating Off-Chip Memory Bank and Bank Group
Conflicts Via Data Duplication,” in 2018 51st Annual IEEE/ACM Inter-

national Symposium on Microarchitecture (MICRO), 2018, pp. 285–297.

[45] E. Lindholm, J. Nickolls, S. Oberman, and J. Montrym, “NVIDIA Tesla:
A Unified Graphics and Computing Architecture,” IEEE Micro, vol. 28,
no. 2, pp. 39–55, 2008.

[46] J. Liu, J. Yang, and R. Melhem, “SAWS: Synchronization aware GPGPU
warp scheduling for multiple independent warp schedulers,” in 2015

48th Annual IEEE/ACM International Symposium on Microarchitecture

(MICRO), 2015, pp. 383–394.

[47] S. Liu, J. E. Lindholm, M. Y. Siu, B. W. Coon, and S. F. Oberman,
“Operand Collector Archtiecture,” U.S. Patent 7834881B2 Nov 16, 2010.

[48] Y. Liu, Z. Yu, L. Eeckhout, V. J. Reddi, Y. Luo, X. Wang, Z. Wang, and
C. Xu, “Barrier-Aware Warp Scheduling for Throughput Processors,” in
Proceedings of the 2016 International Conference on Supercomputing,
ser. ICS ’16. New York, NY, USA: Association for Computing
Machinery, 2016.

[49] V. Narasiman, M. Shebanow, C. J. Lee, R. Miftakhutdinov, O. Mutlu,
and Y. N. Patt, “Improving GPU performance via large warps and two-
level warp scheduling,” in 2011 44th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO), 2011, pp. 308–317.

[50] S. Pai, R. Govindarajan, and M. J. Thazhuthaveetil, “Preemptive Thread
Block Scheduling with Online Structural Runtime Prediction for Con-
current GPGPU Kernels,” in Proceedings of the 23rd International

Conference on Parallel Architectures and Compilation, ser. PACT ’14.
New York, NY, USA: Association for Computing Machinery, 2014, p.
483–484.

[51] B. R. Rau, “Pseudo-Randomly Interleaved Memory,” in Proceedings of

the 18th Annual International Symposium on Computer Architecture, ser.
ISCA ’91. New York, NY, USA: Association for Computing Machinery,
1991, p. 74–83.

[52] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Cache-Conscious
Wavefront Scheduling,” in 2012 45th Annual IEEE/ACM International

Symposium on Microarchitecture, 2012, pp. 72–83.
[53] T. G. Rogers, M. O’Connor, and T. M. Aamodt, “Divergence-Aware

Warp Scheduling,” in Proceedings of the 46th Annual IEEE/ACM Inter-

national Symposium on Microarchitecture, ser. MICRO-46. New York,
NY, USA: Association for Computing Machinery, 2013, p. 99–110.

[54] J. E. Stine, I. Castellanos, M. Wood, J. Henson, F. Love, W. R. Davis,
P. D. Franzon, M. Bucher, S. Basavarajaiah, J. Oh, and R. Jenkal,
“FreePDK: An Open-Source Variation-Aware Design Kit,” in 2007

IEEE International Conference on Microelectronic Systems Education

(MSE’07), 2007, pp. 173–174.
[55] J. A. Stratton, C. I. Rodrigues, I.-J. Sung, N. Obeid, L.-W. Chang,

N. Anssari, G. Liu, and W. mei W. Hwu, “Parboil: A Revised Benchmark
Suite for Scientific and Commercial Throughput Computing,” 2012.

[56] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “Dynamic Thread
Block Launch: A Lightweight Execution Mechanism to Support Ir-
regular Applications on GPUs,” in Proceedings of the 42nd Annual

International Symposium on Computer Architecture, ser. ISCA ’15.
New York, NY, USA: Association for Computing Machinery, 2015, p.
528–540.

[57] J. Wang, N. Rubin, A. Sidelnik, and S. Yalamanchili, “LaPerm: Lo-
cality Aware Scheduler for Dynamic Parallelism on GPUs,” in 2016

ACM/IEEE 43rd Annual International Symposium on Computer Archi-

tecture (ISCA), 2016, pp. 583–595.
[58] P. Xiang, Y. Yang, and H. Zhou, “Warp-Level Divergence in GPUs:

Characterization, Impact, and Mitigation,” in IEEE 20th International

Symposium on High Performance Computer Architecture (HPCA), 2014.
[59] Q. Xu, H. Jeon, K. Kim, W. W. Ro, and M. Annavaram, “Warped-Slicer:

Efficient Intra-SM Slicing through Dynamic Resource Partitioning for
GPU Multiprogramming,” in 2016 ACM/IEEE 43rd Annual Interna-

tional Symposium on Computer Architecture (ISCA), 2016, pp. 230–242.
[60] M. K. Yoon, K. Kim, S. Lee, W. W. Ro, and M. Annavaram, “Virtual

Thread: Maximizing Thread-Level Parallelism beyond GPU Scheduling
Limit,” in 2016 ACM/IEEE 43rd Annual International Symposium on

Computer Architecture (ISCA), 2016, pp. 609–621.


